لا تسمح ميكانيكا الكم بتراكب الحالات الكمومية فقط ولكن أيضاً تراكب البوابات الكمومية. تبين أن بتركيب بوابتين كموميتين A و B، فإن الحساب الكمومي يحصل بكفاءة أكبر دون وجود ترتيب محدد للبوابات منه في حال وجود ترتيب محدد بدقة. المصدر: Philip Walther Group, University of Vienna
برهن فريقٌ من العلماء من جامعة فيينا والأكاديمية الأسترالية للعلوم على صحة مخطط حساب كمومي جديد، حيث تحصل العمليات داخله دون وجود ترتيب محدد جيداً، وبعد ذلك استخدم الفريق الذي يقوده فيليب والثر (Philip Walther) وكاسلاف بروكنر (Caslav Brukner)، هذا المفعول لإنجاز مهمة معينة بفعالية أكبر بكثير مما هي الحال مع الحاسوب الكمومي القياسي (standard quantum computer).
بل علاوة على ذلك، قد تقود هذه الأفكار إلى وضع أسس شكل جديد للحوسبة الكمومية (quantum computing)، لتفتح بالتالي احتماليةً أمام تقديم حواسيب كمومية قادرة على إعطاء سرعات حساب أكبر، وقد نُشرت نتائج عملهم في مجلة "Nature Communications".
حيث تستمر ميكانيكا الكم منذ تصورها للمرة الأولى بتحدي الطريقة الطبيعية في التفكير، وقد أجبر علماء الفيزياء على التعامل مع أفكار غريبة، فعلى الرغم من أن تقبلها يبدو أمراً ليس بالسهل أبداً، إلا أن الظواهر الكمومية حقيقية.
بل فقد برهن العلماء في العقود الأخيرة على إمكانية استخدام التأثيرات الكمومية الغريبة في العديد من التطبيقات المذهلة والقوية، ويشمل ذلك الاتصالات فائقة الأمان (ultra-secure communication) وقرصنة الاتصالات الآمنة الموجودة حالياً، وأيضاً إجراء عمليات محاكاة لأنظمة كمومية معقدة وحل فعّال لأنظمة مكونة من عددٍ كبير من المعادلات.
تُعد الحواسيب الكمومية واحدةً من أكثر التقنيات الكمومية المقترحة تعقيداً وإثارة؛ إذ تُعتبر البوابات الكمومية المنطقية (Quantum logic gates) لبنات البناء الأساسية للحاسوب الكمومي، لكن بناء عدد كافٍ منها لإجراء حساب مفيد هو أمر صعب.
في النهج العادي المتبع في الحساب الكمومي، تُطبق البوابات الكمومية وفقاً لترتيبٍ محدد بوابة قبل الأخرى، و لكن لم تسمح ميكانيكا الكم- إلا مؤخراً- بالوصول إلى تركيب البوابات الكمومية (superimpose quantum gates). وإذا ما تمت هندستها بشكلٍ مناسب، فإن ذلك يعني أن مجموعة من البوابات الكمومية تستطيع أخذ كل الترتيبات المحتملة في الوقت نفسه،و يُمكن استخدام هذا التأثير لتقليل العدد الإجمالي للبوابات اللازمة لنوع محدد من الحساب الكمومي بشكلٍ ملفتٍ للنظر
جميع الترتيبات المحتملة في الوقت نفسه
أدرك فريق والثر مؤخراً أن التركيب (superimposing) للبوابات المنطقية -وهي فكرة نظرية قدمتها مجموعة بروكنر- يُمكن تطبيقه في المختبر.
في حالة تراكب ترتيب البوابات الكمومية يكون من المستحيل-من حيث المبدأ- معرفة فيما إذا حصلت عملية ما قبل أخرى، أو العكس، ويعني ذلك أنه بالإمكان تطبيق بوابتين كموميتين منطقيتين A وB في كلا الترتيبين في الوقت نفسه.
بكلماتٍ أخرى، تؤثر البوابة A قبل البوابة B والبوابة B قبل البوابة A؛ وقد صمم علماء فيزياء من مجموعة والثر تجربة تم من خلالها تطبيق بوابتين منطقيتين كموميتين على فوتونات مفردة موجودة في كلا الترتيبين.
تؤكد نتائج تجربتهم أنه من المستحيل تحديد أي البواباتِ عمل في البداية، لكن التجربة لم تكن مدفوعة بالفضول فقط؛ ويُضيف لورينزو بروسوبيو (Lorenzo Procopio) المؤلف الرئيسي للدراسة: "في الحقيقة كنّا قادرين على تشغيل خوارزمية كمومية (quantum algorithm) لتوصيف البوابات بشكلٍ أكثر فعالية مقارنةً بأي خوارزمية سابقة".
وانطلاقاً من قياس وحيد لفوتون، حدّد الفريق خاصية معينة للبوابتين الكموميتين وبالتالي أكدوا أن البوابتبن كانتا تؤثران في كلا الترتيبين في الوقت نفسه، ومع زيادة البوابات المضافة إلى المهمة، تصبح الطريقة الجديدة أكثر فعالية بكثير مقارنة بالتقنيات السابقة.
إلى الأمام
هذه هي المرة الأولى التي يجري فيها تطبيق التراكب الكمومي للبوابات الكمومية في المختبر، وفي الوقت نفسه فقد استُخدمت للبرهان وبنجاح على نوعٍ جديد من الحوسبة الكمومية، وقد كان العلماء قادرين على إنجاز الحساب بفعالية لا يُمكن الوصول إليها أبداً باعتماد النهج القديم للحوسبة الكمومية.
يفتح هذا العمل الباب أمام دراسات مستقبلية للأنواع الجديدة من الحساب الكمومي؛ وعلى الرغم من أن الآثار الكاملة لهذه التكنولوجية لا تزال غير معروفة، إلا أنّ هذا العمل يُمثل طريقة جديدة ومثيرة لوَصل البحث النظري المتعلق بأساسيات الفيزياء مع الحوسبة الكمومية العملية.