جري تصميم محركٍ أيوني لمجموعةٍ واسعةٍ من المهمات- ابتداءً من الحفاظ على أقمار الاتصالات في موقعها الصحيح (حماية المحطة) إلى دفع المركبات الفضائية في نظامنا الشمسي. تملك هذه المحركات دوافع محددة عالية- نسبة الدفع إلى نسبة استهلاك الوقود الدافع، لذلك تتطلب وقوداً دافعاً أقل بكثير للقيام بمهمة بالمقارنة مع الذي تحتاجه بالدفع الكيميائي. إضافة إلى أنّ الدفع الأيوني يُعد مناسباً للمهمة في بعض الحالات التي لا يمكن فيها حمل كمية الوقود الدافع الكيميائي الكافية في المركبة الفضائية لإنجاز المهمة المطلوبة.
كيف يعمل المحرك الأيوني؟
يؤيّن المحرك الأيوني وقود الدفع بإضافة أو إزالة الإلكترونات لإنتاج الأيونات. تؤين معظم المحركات وقود الدفع عن طريق "قذف الإلكترونات" (electron bombardment): تصطدم إلكترونات عالية الطاقة (سالبة الشحنة) بالذرات الدافعة (متعادلة الشحنة) وتطلق إلكترونات من الذرات الدافعة مما ينتج أيونات ذات شحنة موجبة.
يتكون الغاز الناتج من أيونات موجبة الشحنة وإلكترونات سالبة بنسب تؤدي إلى انعدام وجود شحنة كهربائية، هذا ما يسمى بلازما. تمتلك البلازما بعض خصائص الغاز لكنها تتأثر بالمجالات الكهربائية والمغناطيسية. من الأمثلة الشائعة، البرق والمادة داخل مصابيح الفلورسنت.
وقود الدفع الأكثر شيوعاً المستخدم في الدفع الأيوني هو "الزينون" (xenon)، الذي يتأين بسهولة ولديه كتلة ذرية مرتفعة، وبالتالي يولد مستوىً جيداً من الدفع عند تسريع الأيونات. وهو خامل أيضاً ولديه كثافة تخزين عالية، لذلك فهو مناسب تماماً للتخزين على المركبة الفضائية. في معظم المحركات الأيونية، تُولَّد معظم الإلكترونات بواسطة تفريغ المهبط بعملية تدعى "الانبعاث الأيوني الحراري" (thermionic emission).
تنجذب الإلكترونات المنتَجة من تفريغ المهبط إلى جدران حجرة التفريغ المشحونة بجهد إيجابي عالٍ بالجهد voltage المطبق من قبل إمدادات طاقة التفريغ للمحرك. يُحقن وقود الدفع المتعادل في غرفة التفريغ، حيث تقذف الإلكترونات وقود الدفع لإنتاج أيونات موجبة الشحنة وإتاحة المزيد من الإلكترونات. تمنع المغانط عالية القوة الإلكترونات من الوصول بحرية إلى جدران قناة التفريغ، ما يطيل من وقت وجود الإلكترونات في حجرة التفريغ ويزيد احتمالية حدوث التأيّن.
ترحل الأيونات موجبة الشحنة نحو الشبكات الحاوية على الآلاف من الثقوب المتوازية بشكل دقيق جداً "البؤر" (apertures) في النهاية الخلفية للمحرك الأيوني. الشبكة الأولى هي القطب ذو الشحنة الموجبة "شبكة الحجب" (screen grid).
يطبق جهد موجب عالٍ جداً على شبكة الحجب، لكنه يُشكَّل لإجبار البلازما غير المشحونة على الاستقرار في الجهد العالي. بمرور الأيونات بين الشبكات، تُسرّع باتجاه القطب السالب (مسرّع الشبكة) إلى سرعة عالية جداً (تصل إلى 90000 ميلٍ في الساعة).
تُسرّع الأيونات السالبة خارج المحرك كحزمة أيونية، تُنتج الدفع. يقذف المهبط الأجوف الآخر المتعادل كمية مساوية من الإلكترونات لجعل الشحنة النهائية للحزمة المستنفذة متعادلة. من دون المعادِل، ستُراكم المركبة الفضائية شحنة سالبة، مؤدية في النهاية إلى عودة الأيونات إلى المركبة الفضائية منقصةً من الدفع ومتسببة في تآكل المركبة.
الأجزاء الرئيسية في نظام الدفع الأيوني هي: المحرك الأيوني، ووحدة معالجة الطاقة PPU (power processing unit)ونظام إدارة وقود الدفع PMSاو اختصاراً (propellant management system) والتحكم الرقمي ووحدة الربط DCIU.
تحول وحدة معالجة الطاقة الطاقةَ الكهربائية– عادةً خلايا شمسية أو مصدر حرارة نووياً- من مصدر طاقة إلى الفولتات اللازمة لعمل الأقطاب الجوفاء وحرف الشبكات وتوفير التيارات اللازمة لإنتاج الحزم الأيونية.
يمكن تقسيم نظام إدارة وقود الدفع إلى مجموعة ضغط مرتفع (HPA) التي تقلل ضغط الزينون من الضغوط الأكبر المخزنة في الخزان إلى مستوى يُقاس بدقة لمكونات المحرك الأيوني عن طريق مجموعة الضغط المنخفض (LPA). يتحكم DCIU بأداء النظام ويراقبه، ويؤدي وظائف التواصل مع حاسوب المركبة الفضائية.
كان مركز أبحاث جلين التابع لناسا رائداً في تطوير تكنولوجيا الدفع الأيوني منذ أواخر الخمسينيات في أوّل اختبار له في الفضاء– اختبار صاروخ الفضاء الكهربائي رقم 1- الذي حلّق في يوليو/تموز 1964. من عام 1998 حتى 2001، أتاح نظامُ الدفع الأيوني (NSTAR) "تطبيق ناسا للتقنية الشمسية الجاهزة" القيامَ ببعثة الفضاء السحيق رقم 1، حيث انطلقت أول مركبة تعمل بشكل أساسي عن طريق الدفع الأيوني، وسافرت أكثر من 163 ميلاً وقامت بالتحليق للكويكب برايل Braille والمذنب برولي Borelly.
الدفع الأيوني حالياً
يجري استخدام المحركات الأيونية (على أساس تصميم ناسا) في الحفاظ على أكثر من 100 قمر اتصالات تدور حول الأرض بالتزامن معها في مواقعها الصحيحة، وثلاثة محركات أيونية NSTAR تستخدم تقنية جلين المتقدمة لتُمكّن مركبة داون الفضائية (التي أُطلقت في 2007) من السفر عميقاً في نظامنا الشمسي. داون هي أول مركبة فضائية تدور حول جسمين في حزام الكويكبات بين المريخ والمشتري: الكوكبان الأوليان فيستا Vesta وسيريس Ceres.
الدفع الأيوني مستقبلاً
بينما تنمو التطبيقات التجارية للدفع الكهربائي بسبب قابليتها لتمديد فترة تشغيل الأقمار الصناعية وتقليل تكاليف الإطلاق والتشغيل، تشارك ناسا في العمل على نوعين مختلفين من محركات الدفع الأيوني: محرك زينون ناسا المتطور (NEXT) والمحرك الحلقي.
NEXT هو نظامُ دفع أيوني عالي الطاقة مُصممٌ لخفض تكاليف المهمة ووقت الرحلة. يعمل بثلاثة أضعاف مستوى طاقة NSTAR واختُبر لـ 51000 ساعة مستمرة (ما يعادل 6 سنوات من العمل) في اختبارات أرضية دون فشل، بهدف إثبات أن باستطاعة المحرك العمل للمدة المطلوبة لمجموعة من البعثات.
فاز مركز جلين التابع لناسا مؤخراً بالتعاقد مع Aerojet Rocketdyne لصنع نظامي رحلات من نوع NEXT (المحركات ومعالجات الطاقة) للاستخدام في مهمات ناسا العلمية المستقبلية. بالإضافة إلى ذلك، تخطط ناسا لأخذ تكنولوجيا NEXT لطاقة وطاقة دفع أعلى بحيث يمكن استخدامها لمجموعة واسعة من التطبيقات التجارية التابعة لناسا، بالإضافة إلى التطبيقات الدفاعية.
يملك محرك ناسا الحلقي التابع لـ جلين القدرة على تجاوز إمكانيات أداء نظام الدفع الأيوني NEXT وتصاميم محركات الدفع الكهربائي الأخرى. تستخدم تصميم المحرك الجديد الذي ينتج مساحة حزمة كاملة (حلقية) أكبر بمرتين من NEXT.
تعتمد المحركات على المحرك الحلقي الذي يحقق مستويات طاقة ودفع عالية جداً، ما يسمح باستخدام المحركات الأيونية في طرق لم تستخدم بها من قبل. الأهداف هي تقليل تكلفة النظام وتعقيده وتعزيز الأداء (دفع أكبر بالنسبة لإمكانيات الطاقة).
إن التقدم المستمر لـ جلين التابع لناسا سيُهيئ المحركات الأيونية لمجموعة واسعة من البعثات لتأمين الدفع بكفاءة وبشكل موثوق لتطبيقات ناسا التجارية والدفاعية.